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ABSTRACT: Reservoir permeability estimation f iom 
wireline logs is the most difficult tusk for  
petrophysicists. Many studies have shown that the 
backpropagation neural network (BPNN) is the most 
promising tooi to date, because of iis ability to learn 
and generalise. This paper presents an improved 
fuzzy neural network (FNN) to solve the same 
problem. In the example presented, this model is 
stable with fast convergence and gives smaller error 
compared to BPNN and previous FNN methods. 

1.1 Petroleum reservoir and permeability 
A petroleum reservoir is a volume of porous 
sedimentary rock which has been filied with 
hydrocarbon, such as oil and gas. Reservoir 
permeability is one oi' most important petrophysicai 
properties, and is widely used to determine the well 
or field production rate of such hydrocarbon. 

Permeability is a measure of the mobility of fluid 
flow through the porous media when subjected to 
applied pressure gradients. The determination of 
such properties is complicated because the 
measurement sites available in the reservoir are 
limited to isolated well locations. At these locations, 
measurements take the form of actual rock samples 
(cores) and wireline log readings. 

1.2 Data collection 
Rock samples are obtained by using a coring barrel 
to recover intact cylindrical samples of reservoir 
rock. These samples are then sent to the laboratory 
and different petrophysical properties (such as 
permeability) are measured. Wireline log readings 
are obtained every 150 mm or so of depth, by 
lowering various sondes in the drilled wells. These 
measure formation and fluid properties in and around 
the wellbore location. Typical sondes generate 
electrical signals from measurements of radioactive, 
resistivity, acoustic, and neutron attenuation and 
scattering properties of the formation and its 
contained fluids. Because coring is a relatively time 
consuming and expensive process, much effort is 
made to relate other measures to the available core 
permeability measurements so that the 
transformations developed can be applied to predict 
permeability data in uncored wells or intervals. 

1.3 Correlation methods 
Correlation of wireline log readings and core 
permeability measurements has been widely studied. 
One of the most commonly used method to date is 
backpropagation neural networks [3], 171, [8J, [13j, 
[14]. This method uses the wireline log readings as 
inputs, and connection weights are determined by 
minim (sing the difference between calculated 
permeability and target permeability from core 
measurements. 

While backpropagation neural networks (BPNM) 
have been widely used to model data correlation of 
various kinds, optiinisation of network topology and 
development of fast training algorithms are still 
being studied in order to compensate for the 
deficiencies of such models. During the last few 
years of research, fuzzy logic has shown great 
improvements over previous neural network models, 
scch as fuzzy neural networks (FNN) which 
incorporate fuzziness (cognitive uncertainty) into the 
neural network framework [ l ] ,  121, [4], [ 5 ] ,  [ 4 ] ,  [SI, 
[lo], [12]. The use of FM\T in permeability 
estimation has not been previously studied. 

1.4 Objective of present study 
The objective of this paper is to compare the 
performance of BPIUIN and FNN models in 
permeability estimation from wireline logs in an oil 
field. An improved FNN model (IFNN), based on a 
gradient descent fuzzy algorithm, is also developed. 
Its performance will be evaluated and compared with 
BPNN and FNN on the same data set. In the case 
demonstration, part of the core permeability data set 
is used in developing the models, and these models 
are then applied to the rest of the data set in which 
comparison can be made. 

We will first review a FNN model proposed by 
Lin and Cunningham [6] .  We will then introduce our 
improved FNN (IFNN), followed by results and 
discussions of a case study. 

2. FUZZY NEURAL NETWORKS 

Figure 1 shows a schematic diagram of the fuzzy 
neural network (FNN) developed by Lin and 
Cunningham [6] .  We will use their model to estimate 
permeability. We have four layers (input, 
fuzzification, hidden and output. In this diagram, we 
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have two inputs, three fuzzy rules, and one output 
neuron. The number of hidden neurons is the same 
as the number of fuzzy rules. There are 2x3 neurons 
in the fuzzification layer. Every neuron iin this layer 
represents a fuzzy membership function for each of 
the input variables. The activation function used in 
the fuzzification layer is:- 

Aij(xj) = exp(-lwij,xj + wij0l’) (1) 

where A ,  is the value of radial basis (fuzzy 
membership) function of the jth input variable 
corresponding to the ith rule. The variable I is in the 
range 0.5 5 1 5  5, and w, is the connection weight. 
The letter “F” in the diagram represents this 
operation. 

Input Layer Fuzrification Hidden Layer Output Layer 

Fig. 1 .  A schematic diagram of a FNN model. 

The activation function used in the hidden layer 
is:- 

in 

where m is the number of input variables. The letter 
‘W’ denotes this operation in the figure. 

The output layer is labeled “E”, and performs:- 
n 

Y = c y i c i  
i=l 

where n is the number of fuzzy rules, ci is the 
connection weight. Hence, the fuzzy rule is of the 
form:- 

Lin and Cunningham [ 6 ]  used a fuzzy curve to 
estimate the number of rules, and the initial weights 
{w, c} were determined according to the ranges of 
the input and output. The network was trained using 
the backpropagation algorithm. The authors also 
claimed that FNN could result in rapid convergence 
compared to BPNN, but it is sometimes unstable and 
poor in precision. 

3. IMPROVED FUZZY NEURAL NETWORKS 

The improved fuzzy neural network (IFNN) is based 
on the FNN model presented previously, and the 
fuzzy model suggested by Takagi a id  Sugeno [11]. 
The model developed by Takagi and Sugeno [ 1 1 ] is a 
non-linear model which can be represented by the 
following rule:- 

Rule: IF x, is A,, and x2 is A ,  and ... and x, is Ai, 
THEN:- 

m 

and:- 

where b, is the connection weight (see Figure 2). 

There are three major differences between IFNN 
and FNN:- 

Equation (4) expresses a highly non-linear 
functional relation using a small number of rules. 
IFNN iteratively calculates b,, instead of ci in 
FNN, for the determination of Y. 
Equation ( 5 )  approximates any continuous 
function on a compact set [ 151. Y in equation (3) 
does not have the denominator. 
y in equation (2) uses the fuzzy MIN (or product) 
L L ~ ”  instead of the “IS’ operation. 
The iterative equations for updating weights {w,  
are presented in the appendix. 

CASE STUDY 

4.1 Objective 
The objective of this study is to compare three 
different methods in predicting permeability from 
wireline logs: BPNN, FNN and IFNN. The results 
are analysed and plotted in graphical form. 

IF x, is Ai, and x2 is A ,  and ... and x,, is A,, 
THEN y is ci 
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Input Layer Fuvification Hidden Layer Output Layer 

Fig. 2. A schematic diagram of an IF" model. 

4.2. Training and test data 
An oil field was used to provide wireline logs and 
core data. The data set consisted of 230 points with 
six input logs, namely gamma ray (GR), 
microspherically-focussed log (MSFL), deep 
resistivity (LLD), sonic travel times (DT), bulk 
density (RHOB) and neutron porosity (NPHI). Each 
of these data points had a core permeability 
measurement (k) obtained from laboratory analysis. 
This whole data set was randomly separated into two 
smaller sets. The first one consisted of 150 patterns 
for training, and the other one had 80 patterns for 
testing. The test data set was used to validate the 
trained network after every iteration. The best model 
was obtained based on the minimum root mean- 
square-error (RMSE) on the test set. 

Each of the input logs was normalised in the 
range of (0,l). This is normally done in neural 
computation as the network will then give 
comparable magnitudes of weight values. The 
logarithm of MSFL, LLD and k values were used 
because the transformed variables are usually normal 
distributed, and this transformation works better in 
most prediction models. All the logarithm of k 
values were normalised in the range of (0.1,0.9) for 
the BPNN. In order to keep consistency for this 
study, the same normalised input and output values 
were used for all models. 

5. RESULTS 

In BPNN, the training data set for permeability 
prediction was composed of 150 patterns with six 
input logs. Two to five hidden neurons were used to 
train the model. Five hidden neurons were found to 
produce the lowest minimum error on the test set. 
(see Figure 3a). The maximum training epochs was 
10,000. The minimum RMSE was 0.0657 on the test 
set at the maximum epoch. Further training gave 
give slightly smaller RMSE, but the improvement 
was insignificant. 

For FNN, two to five fuzzy rules were tried, and 
the optimal number was three (see Figure 3b). The 
minimum RMSE on the test set was 0.0717 at 424 
training epochs. 

For IFNN, two to five fuzzy rules were tried, and 
the optimal number was three (see Figure 3c). The 
minimum RMSE on the test set was 0.0655 at 315 
training epochs. 

a) No. of hidden neurons for B P W  
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2 3 4 5 

NO ofhid& iicurons 

b). No. o f  fuzzy rules for FNN. 

0076 ~ ~~ -~ 

2 3 4 5 
No. of f&zy rules 

c). No. of fuzzy rules for IFNN 

0 069 - 

w 

2 3 4 5 

Nwter  of fiezy rules 

Fig. 3. Sensitivity analysis on model parameters. 
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6. DISCUSSION 

The summary of the results are plotted in Figures 4 
and 5. Figure 4 shows the learning profiles of the 
different models for the test set. Only the models 
with best performance are shown. The horizontal 
axis is a logarithmic scale in order to highlight the 
early behavior of the models. The vertical axis is the 
RMSE on the test set. IFNN shows the fastest 
convergence, followed by FNN and BPNN. 

Figure 5 shows a cross-plot of training epochs 
versus minimum RMSE for the best model 
configurations. Ideally, a good technique should be 
in the bottom left hand region which means the 
model requires small training epochs and gives small 
error. In this figure, BPNN is on the top left hand 
region, which represents high training epochs and 
low error, FNN is on the bottom right hand region, 
which represents low training epochs and high error, 
and IFNN is on the bottom left hand region, which 
represents low training epochs and low error. 
Although the minimum RMSE from ElPNN and 
IF” were similar, IFNN has an obvious advantage 
of being faster to converge. 
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Fig. 4. BPNN, FNN and IFNN leaming profiles for 
the 80 test patterns. 
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Fig. 5. No. of epochs versus minimum RMSE 
crossplot. 

7. CONCLUSIONS 

A technique for permeability predictiion from 
wireline logs is presented using a fuzzy model. The 
technique is applied to a field data set and is also 
compared with backpropagation neural networks and 
hzzy  neural networks. Based on the results obtained 
from this study, the major fmdings are:- 

The improved fuzzy neural networks can be used 
to estimate permeability from wireline logs. 
The improved fuzzy neural networks gives 
smaller error on the test set compared to 
backpropagation neural networks and the 
previous fuzzy neural networks. It has the 
property of rapid convergence. 
Further work on improving the iterative algorithm 
for updating weights i s  currently being 
undertaken. 
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APPENDIX 

The iterative equations are deveioped based on the least mean square (LMS) technique and the gradient descent 
algorithm. As shown in equation (5 ) ,  the final global output Y is determined by the weights(6,w). In order to 
update the weights, let be the target output, then define the error function:- 

1 
L 

E = p ( Y  -Y*)2 

Using LMS technique and the gradient descent algorithm, we can get the following iterative equatiolls for 
updating the weights:- 

bio(t  + 1) = 
I - a  

p A k i j y i x k j ( Y *  - y k >  
bij(t) -abij(t)  + --E[ 1 

P k = l  

b,(t + 1) = 
1-a 

where p is the number of training samples, CI and p is usually in the range of (0, I), and:- 
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n m 

r=l 

NI 

cki = bio 4- bijXkj  
j=1 

where k = I ,  2, ..., p ,  i = r = I ,  2, ..., n, xkj is the j" component of input variables for the training pattem k and A 

is fuzzy MIN or product operator. 

The initialisation of {b,,b,, ,w,,~,w,,,} is as follows: b,, = 1 - C b,, ; b,, = r,, / m, where r,, is a random number in the 
range of (0, l) ,  the initial weights of w,,, and w,,, is the same as the previous FNN model. 
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